Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Sports Act Living ; 6: 1380864, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725475

RESUMO

Introduction: Parkinson's disease (PD) is a prevalent neurodegenerative condition observed primarily in the elderly population that gives rise to motor and non-motor symptoms, one of which is muscle weakness. The aim of this study was to characterize the vastus lateralis torque-fascicle length (T-L) and the knee extensors torque-angular velocity (T-V) and power-angular velocity (P-V) relationships in PD patients and to investigate the influence of muscle geometry on muscle mechanics. Methods: Participants (11 PD: patients, 9 CR: age matched healthy controls; 10 CY: young healthy controls) performed: (i) isometric contractions (e.g., MVC) to obtain the torque-angle and T-L relationships; (ii) isokinetic (e.g., iso-velocity) contractions to obtain the T-V and P-V relationships. During the experiments, the architecture of vastus lateralis (pennation angle, fascicle length, muscle thickness) was also determined by using an ultrasound apparatus. Results: Significant differences were observed between PD patients and physically matched control groups (CR and CY) in terms of maximum isometric force (calculated as the apex of the T-L curve) and maximum mechanical power (apex of the P-V curve), but not in maximum shortening velocity. Among the mechanical variables investigated, mechanical power was able to identify differences between the less and the more affected side in PD patients, suggesting that this parameter could be useful for clinical evaluation in this population. Conclusions: The observed results cannot be explained by differences in muscle geometry at rest (similar in the three cohorts), but rather by the muscle capacity to change in shape during contraction, that is impaired in PD patients.

2.
Scand J Med Sci Sports ; 34(5): e14639, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38686976

RESUMO

BACKGROUND: Associations between muscle architecture and rate of force development (RFD) have been largely studied during fixed-end (isometric) contractions. Fixed-end contractions may, however, limit muscle shape changes and thus alter the relationship between muscle architecture an RFD. AIM: We compared the correlation between muscle architecture and architectural gearing and knee extensor RFD when assessed during dynamic versus fixed-end contractions. METHODS: Twenty-two recreationally active male runners performed dynamic knee extensions at constant acceleration (2000°s-2) and isometric contractions at a fixed knee joint angle (fixed-end contractions). Torque, RFD, vastus lateralis muscle thickness, and fascicle dynamics were compared during 0-75 and 75-150 ms after contraction onset. RESULTS: Resting fascicle angle was moderately and positively correlated with RFD during fixed-end contractions (r = 0.42 and 0.46 from 0-75 and 75-150 ms, respectively; p < 0.05), while more strongly (p < 0.05) correlated with RFD during dynamic contractions (r = 0.69 and 0.73 at 0-75 and 75-150 ms, respectively; p < 0.05). Resting fascicle angle was (very) strongly correlated with architectural gearing (r = 0.51 and 0.73 at 0-75 ms and 0.50 and 0.70 at 75-150 ms; p < 0.05), with gearing in turn also being moderately to strongly correlated with RFD in both contraction conditions (r = 0.38-0.68). CONCLUSION: Resting fascicle angle was positively correlated with RFD, with a stronger relationship observed in dynamic than isometric contraction conditions. The stronger relationships observed during dynamic muscle actions likely result from different restrictions on the acute changes in muscle shape and architectural gearing imposed by isometric versus dynamic muscle contractions.


Assuntos
Contração Isométrica , Torque , Humanos , Masculino , Contração Isométrica/fisiologia , Adulto Jovem , Adulto , Músculo Quadríceps/fisiologia , Músculo Quadríceps/anatomia & histologia , Músculo Quadríceps/diagnóstico por imagem , Corrida/fisiologia , Articulação do Joelho/fisiologia , Força Muscular/fisiologia , Fenômenos Biomecânicos
3.
Scand J Med Sci Sports ; 34(4): e14613, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38534068

RESUMO

BACKGROUND: Quantitative ultrasound (QUS) techniques are new diagnostic tools able to identify changes in structural and material properties of the investigated tissue. For the first time, we evaluated the capability of QUS techniques in determining the in vivo transient changes in knee joint cartilage after a stressful task. METHODS: An ultrasound scanner collecting B-mode and radiofrequency data simultaneously was used to collect data from the femoral cartilage of the right knee in 15 participants. Cartilage thickness (CTK), ultrasound roughness index (URI), average magnitude ratio (AMR), and Nakagami parameters (NA) were evaluated before, immediately after and every 5 min up to 45 min a stressful task (30 min of running on a treadmill with a negative slope of 5%). RESULTS: CTK was affected by time (main effect: p < 0.001). Post hoc test showed significant differences with CTK at rest, which were observed up to 30 min after the run. AMR and NA were affected by time (p < 0.01 for both variables), while URI was unaffected by it. For AMR, post hoc test showed significant differences with rest values in the first 35 min of recovery, while NA was increased compared to rest values in all time points. CONCLUSION: Data suggest that a single running trial is not able to modify the integrity of the femoral cartilage, as reported by URI data. In vivo evaluation of QUS parameters of the femoral cartilage (NA, AMR, and URI) are able to characterize changes in cartilage properties over time.


Assuntos
Cartilagem Articular , Corrida , Humanos , Cartilagem Articular/diagnóstico por imagem , Ultrassonografia/métodos , Articulação do Joelho
4.
Int J Sports Med ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37956876

RESUMO

Unsteady locomotion (e. g., sprints and shuttle runs) requires additional metabolic (and mechanical) energy compared to running at constant speed. In addition, sprints or shuttle runs with relevant speed changes (e. g., with large accelerations and/or decelerations) are typically short in duration and, thus, anaerobic energy sources must be taken into account when computing energy expenditure. In sprint running there is an additional problem due to the objective difficulty in separating the acceleration phase from a (necessary and subsequent) deceleration phase.In this review the studies that report data of energy expenditure during sprints and shuttles (estimated or actually calculated) will be summarized and compared. Furthermore, the (mechanical) determinants of metabolic energy expenditure will be discussed, with a focus on the analogies with and differences from the energetics/mechanics of constant-speed linear running.

5.
Proc Biol Sci ; 290(2006): 20231469, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37670588

RESUMO

The uncoupling behaviour between muscle belly and fascicle shortening velocity (i.e. belly gearing), affects mechanical output by allowing the muscle to circumvent the limits imposed by the fascicles' force-velocity relationship. However, little is known about the 'metabolic effect' of a decrease/increase in belly gearing. In this study, we manipulated the plantar flexor muscles' capacity to change in shape (and hence belly gearing) by using compressive multidirectional loads. Metabolic, kinetic, electromyography activity and ultrasound data (in soleus and gastrocnemius medialis) were recorded during cyclic fixed-end contractions of the plantar flexor muscles in three different conditions: no load, +5 kg and +10 kg of compression. No differences were observed in mechanical power and electrophysiological variables as a function of compression intensity, whereas metabolic power increased as a function of it. At each compression intensity, differences in efficiency were observed when calculated based on fascicle or muscle behaviour and significant positive correlations (R2 range: 0.7-0.8 and p > 0.001) were observed between delta efficiency (ΔEff: Effmus-Efffas) and belly gearing (Vmus/Vfas) or ΔV (Vmus-Vfas). Thus, changes in the muscles' capacity to change in shape (e.g. in muscle stiffness or owing to compressive garments) affect the metabolic demands and the efficiency of muscle contraction.


Assuntos
Contração Muscular , Músculos , Animais , Camundongos , Cinética , Eletromiografia
6.
J Biomech ; 159: 111796, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37696235

RESUMO

Achilles tendon stiffness (kAT) and Young's modulus (yAT) are important determinants of tendon function. However, their evaluation requires sophisticated equipment and time-consuming procedures. The goal of this study was twofold: to compare kAT and yAT between populations using the classical approach proposed in the literature (a combination of ultrasound and force data) and the MRI technique to understand the MRI's capability in determining differences in kAT and yAT. Furthermore, we investigated potential correlations between short and long T2* relaxation time, kAT and yAT to determine whether T2* relaxation time may be associated with material or structural properties. Twelve endurance and power athlete, and twelve healthy controls were recruited. AT T2* short and long components were measured using standard gradient echo MRI at rest, while kAT and yAT were evaluated using the classical method (combination of ultrasound and dynamometric measurements). Power athletes had the highest kAT (3064 ± 260, 2714 ± 260 and 2238 ± 189 N/mm for power athletes, endurance athletes and healthy control, respectively) and yAT (2.39 ± 0.28, 1.64 ± 0.22 and 1.97 ± 0.32 GPa for power athletes, endurance athletes and healthy control, respectively) and the lowest T2* short component (0.58 ± 0.07, 0.77 ± 0.06 and 0.74 ± 0.08 ms for power athletes, endurance athletes and healthy control, respectively). Endurance athletes had the highest T2* long component value. No correlations were reported between T2* long component, kAT or yAT in the investigated populations, whereas the T2* short component was negatively correlated with yAT. These results suggest that T2* short component could be used to investigate the differences in AT material properties in different populations.

7.
Orthop J Sports Med ; 11(7): 23259671231183416, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37560612

RESUMO

Background: Regular walking in different types of footwear may increase the mediolateral shear force, knee adduction moment, or vertical ground-reaction forces that could increase the risk of early development of knee osteoarthritis (OA). Purpose: To compare kinematic and kinetic parameters that could affect the development of knee OA in 3 footwear conditions. Study Design: Controlled laboratory study. Methods: A total of 40 asymptomatic participants performed walking trials in the laboratory at self-selected walking speeds under barefoot (BF), minimalistic (MF), and neutral (NF) footwear conditions. Knee joint parameters were described using discrete point values, and continuous curves were evaluated using statistical parametric mapping. A 3 × 1 repeated-measures analysis of variance was used to determine the main effect of footwear for both discrete and continuous data. To compare differences between footwear conditions, a post hoc paired t test was used. Results: Discrete point analyses showed a significantly greater knee power in NF compared with MF and BF in the weight absorption phase (P < .001 for both). Statistical parametric mapping analysis indicated a significantly greater knee angle in the sagittal plane at the end of the propulsive phase in BF compared with NF and MF (P = .043). Knee joint moment was significantly greater in the propulsive phase for the sagittal (P = .038) and frontal planes (P = .035) in BF compared with NF and MF and in the absorption phase in the sagittal plane (P = .034) in BF compared with MF and NF. A significant main effect of footwear was found for anteroposterior (propulsion, ↑MF, NF, ↓BF [P = .008]; absorption, ↑BF, MF, ↓NF [P = .001]), mediolateral (propulsion, ↑MF, NF, ↓BF [P = .005]; absorption, ↑NF, MF, ↓BF [P = .044]), and vertical (propulsion, ↑NF, BF, ↓MF [P = .001]; absorption, ↑MF, BF, ↓NF [P < .001]) ground-reaction forces. Knee power showed a significant main effect of footwear (absorption, ↑NF, MF, ↓BF [P = .015]; propulsion, ↑MF, NF, ↓BF [P = .039]). Conclusion: Walking in MF without sufficient accommodation affected kinetic and kinematic parameters and could increase the risk of early development of knee OA.

8.
J Sports Sci ; 41(8): 812-819, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37535868

RESUMO

The main purpose of this study was to investigate the relationship among Achilles tendon (AT) dimensions, ankle joint stiffness, and footfall patterns in recreational rearfoot and non-rearfoot runners. Based on the foot strike index, a total of 107 runners were divided into rearfoot (47 females/40 males) and non-rearfoot runners (14 females/6 males). All participants had theirs AT dimensions (AT length, AT thickness, and AT moment arm) measured using a combination of ultrasound and motion capture systems. In addition, all performed running trials measured at self-selected speed in laboratory-neutral shoes. A partial correlation coefficient was used for correlations between the selected variables. The results revealed a significant relationship between ankle joint stiffness and level of footfall pattern in rearfoot (r = 0.232, p = 0.032) and non-rearfoot runners (r = -0.811, p < 0.001). The results also suggest a relationship between AT thickness and foot strike index (r = -0.486) in non-rearfoot runners. Runners whose footfall pattern is closer to the heel have greater ankle joint stiffness. Non-rearfoot runners whose footfall pattern is closer to the toe have a thinner AT. Non-rearfoot runners with thicker AT had greater ankle joint stiffness.


Assuntos
Tendão do Calcâneo , Masculino , Feminino , Humanos , Tendão do Calcâneo/diagnóstico por imagem , Tornozelo , Fenômenos Biomecânicos , , Extremidade Inferior
9.
J Appl Biomech ; 39(4): 237-245, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37419494

RESUMO

There are relatively few running studies that have attempted to prospectively identify biomechanical risk factors associated with Achilles tendon (AT) injuries. Therefore, the aim was to prospectively determine potential running biomechanical risk factors associated with the development of AT injuries in recreational, healthy runners. At study entry, 108 participants completed a set of questionnaires. They underwent an analysis of their running biomechanics at self-selected running speed. The incidence of AT running-related injuries (RRI) was assessed after 1-year using a weekly questionnaire standardized for RRI. Potential biomechanical risk factors for the development of AT RRI injury were identified using multivariable logistic regression. Of the 103 participants, 25% of the sample (15 males and 11 females) reported an AT RRI on the right lower limb during the 1-year evaluation period. A more flexed knee at initial contact (odds ratio = 1.146, P = .034) and at the midstance phase (odds ratio = 1.143, P = .037) were significant predictors for developing AT RRI. The results suggested that a 1-degree increase in knee flexion at initial contact and midstance was associated with a 15% increase in the risk of an AT RRI, thus causing a limitation of training or a stoppage of running in runners.


Assuntos
Tendão do Calcâneo , Traumatismos do Tornozelo , Corrida , Masculino , Feminino , Humanos , Estudos Prospectivos , Extremidade Inferior , Joelho , Corrida/lesões , Fenômenos Biomecânicos
10.
J Sports Sci ; 41(4): 381-390, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37199192

RESUMO

Achilles tendinopathy was reported to have the highest incidence proportion of all running-related injuries. The purpose of this study was to analyse the association between the Achilles tendon structure and running activity status. 350 healthy participants (runners and inactive controls, 30-50 years) participated in this research. Each participant completed questionnaires: socioeconomic, psychological, physical activity habits, running status and history and VISA-A. Magnetic resonance imaging, anthropological, running biomechanics and 14 days of physical activity monitoring assessments were performed. There was a higher odd of being in the upper quartile of the Achilles tendon T2* relaxation time with higher maximal knee extension moment independent of age and sex. Compared with runners who ran 21-40 km per week, non-runners and those who ran more than 40 km per week had increased odds of having longest the Achilles tendon T2* relaxation time. Regular running of 21 to 40 km per week is related to the Achilles tendon T2* relaxation time indicating possibly better water content and collagen orientation in these runners with compare to inactive non-runners or highly active individuals. In addition, Achilles tendon T2* relaxation time as indirect indicator of the Achilles tendon structure was positively related to the maximal knee extension moment during running.


Assuntos
Tendão do Calcâneo , Corrida , Tendinopatia , Humanos , Tendão do Calcâneo/diagnóstico por imagem , Tendão do Calcâneo/lesões , Fenômenos Biomecânicos , Corrida/lesões , Articulação do Joelho
11.
Eur J Appl Physiol ; 123(10): 2239-2248, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37256295

RESUMO

This study aimed (i) to investigate the role of regional characteristics of the knee extensors muscles (vastus lateralis: VL, vastus intermedius: VI and rectus femoris: RF) in determining maximum-voluntary force (MVF); and (ii) to understand which regional parameter of muscle structure would best predict MVF. Muscle architecture (e.g., pennation angle and fascicle length), muscle volume (Vol), anatomical (ACSA) and physiological cross-sectional-area (PCSA) were measured in the proximal (0-33% of the muscle length), middle (33-66% of the muscle length) and distal (66-100% of the muscle length) portions of each muscle in fifteen healthy males using ultrasound and Magnetic Resonance Imaging (MRI). Knee extensors force was calculated in isometric condition at a single knee joint angle of 90 degrees. Regional ACSA, Vol and PCSA were correlated with MVF production. Regional muscle geometry showed no significant correlations with MVF. Among regions, the middle portion of each muscle was largely correlated with MVF compared to all the other regions (distal and proximal). To understand which regional structural parameter best predicted MVF, a stepwise multiple linear regression was performed. This model showed a significant explanatory power (P < 0.001, R2 = 0.76, adjusted R2 = 0.71), including muscle Vol collected in the mid portions of VL and RF. Even if no significant differences were reported between Vol, PCSA and ACSA in determining MVF, our results showed that the RF and VL volume collected in the middle portion of the muscle length are strong determinants of MVF produced by the knee extensors at 90 degrees joint angle.


Assuntos
Articulação do Joelho , Músculo Esquelético , Masculino , Humanos , Estudos Transversais , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/fisiologia , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiologia , Músculo Quadríceps/fisiologia , Ultrassonografia
12.
Acta Physiol (Oxf) ; 238(1): e13957, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36876976

RESUMO

AIM: Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized, among the others, by muscle weakness. PD patients reach lower values of peak torque during maximal voluntary contractions but also slower rates of torque development (RTD) during explosive contractions. The aim of this study was to better understand how an impairment in structural/mechanical (peripheral) factors could explain the difficulty of PD patients to raise torque rapidly. METHODS: Participants (PD patients and healthy matched controls) performed maximum voluntary explosive fixed-end contraction of the knee extensor muscles during which dynamic muscle shape changes (in muscle thickness, pennation angle, and belly gearing: the ratio between muscle belly velocity and fascicle velocity), muscle-tendon unit (MTU) stiffness and EMG activity of the vastus lateralis (VL) were investigated. Both the affected (PDA) and less affected limb (PDNA) were investigated in patients. RESULTS: Control participants reached higher values of peak torque and showed a better capacity to express force rapidly compared to patients (PDA and PDNA). EMG activity was observed to differ between patients (PDA) and controls, but not between controls and PDNA. This suggests a specific neural/nervous effect on the most affected side. On the contrary, MTU stiffness and dynamic muscle shape changes were found to differ between controls and patients, but not between PDA and PDNA. Both sides are thus similarly affected by the pathology. CONCLUSION: The higher MTU stiffness in PD patients is likely responsible for the impaired muscle capability to change in shape which, in turn, negatively affects the torque rise.


Assuntos
Doença de Parkinson , Humanos , Músculo Esquelético/fisiologia , Tendões/fisiologia , Músculo Quadríceps/fisiologia , Articulação do Joelho/fisiologia , Torque , Contração Muscular/fisiologia , Contração Isométrica/fisiologia , Eletromiografia
13.
Exp Physiol ; 108(1): 90-102, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36394370

RESUMO

NEW FINDINGS: What is the central question of the study? Are the changes in force potentials (at the muscle level) related with metabolic changes at speeds above and below the walk-to-run transition? What is the main finding and its importance? The force-length and force-velocity potentials of gastrocnemius medialis during human walking decrease as a function of speed; this decrease is associated with an increase in cumulative EMG activity and in the energy cost of locomotion. Switching from fast walking to running is associated to an increase in the force potentials, supporting the idea that the 'metabolic trigger' that determines the transition from walking to running is ultimately driven by a reduction of the muscle's contractile capacity. ABSTRACT: The aim of this study was to investigate the interplay between the force-length (F-L) and force-velocity (F-V) potentials of gastrocnemius medialis (GM) muscle fascicles, the cumulative muscle activity per distance travelled (CMAPD) of the lower limb muscles (GM, vastus lateralis, biceps femori, tibialis anterior) and net energy cost (Cnet ) during walking and running at speeds above and below the walk-to-run transition speed (walking: 2-8 km h-1 ; running: 6-10 km h-1 ). A strong association was observed between Cnet and CMAPD: both changed significantly with walking speed but were unaffected by speed in running. The F-L and F-V potentials decreased with speed in both gaits and, at 6-8 km h-1 , were significantly larger in running. At low to moderate walking speeds (2-6 km h-1 ), the changes in GM force potentials were not associated with substantial changes in CMAPD (and Cnet ), whereas at walking speeds of 7-8 km h-1 , even small changes in force potentials were associated with steep increases in CMAPD (and Cnet ). These data suggest that: (i) the walk to run transition could be explained by an abrupt increase in Cnet driven by an upregulation of the EMG activity (e.g., in CMAPD) at sustained walking speeds (>7 km h-1 ) and (ii) the reduction in the muscle's ability to produce force (e.g., in the F-L and F-V potentials) contributes to the increase in CMAPD (and Cnet ). Switching to running allows regaining of high force potentials, thus limiting the increase in CMAPD (and Cnet ) that would otherwise occur to sustain the increase in locomotion speed.


Assuntos
Corrida , Caminhada , Humanos , Eletromiografia , Fenômenos Biomecânicos , Caminhada/fisiologia , Músculo Esquelético/fisiologia , Corrida/fisiologia
14.
Biology (Basel) ; 11(6)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35741433

RESUMO

Walking at speeds higher than transition speed is associated with a decrease in the plantar-flexor muscle fibres' ability to produce force and, potentially, to an impaired behaviour of the muscle−tendon unit (MTU) elastic components. This study aimed to investigate the ankle joint functional indexes and the Achilles tendon mechanical behaviour (changes in AT force and power) to better elucidate the mechanical determinants of the walk-to-run transition. Kinematics, kinetic and ultrasound data of the gastrocnemius medialis (GM) were investigated during overground walking and running at speeds ranging from 5−9 km·h−1. AT and GM MTU force and power were calculated during the propulsive phase; the ankle joint function indexes (damper, strut, spring and motor) were obtained using a combination of kinetic and kinematic data. AT force was larger in running at speeds > 6.5 km/h. The contribution of AT to the total power provided by the GM MTU was significantly larger in running at speeds > 7.5 km/h. The spring and strut indexes of the ankle were significantly larger in running at speeds > 7.5 km/h. These data suggest that the walk-to-run transition could (at least partially) be explained by the need to preserve AT mechanical behaviour and the ankle spring function.

15.
J Biomech ; 137: 111095, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35472710

RESUMO

Achilles tendon (AT) mechanical properties can be estimated using an inverse dynamic approach, taking into account the tendon internal moment arm (IMA) and its kinematic behavior. Although AT presents a curvilinear line of action, a straight-line function to estimate IMA and AT length is often utilized in the literature. In this study, we combined kinetic, kinematic and ultrasound data to understand the impact of two different approaches (straight-line vs. curvilinear) in determining AT mechanical properties in vivo (during walking and running at the self-selected speed). AT force and power were calculated based on data of AT IMA and AT length derived by both respective methods. All investigated parameters were significantly affected by the method utilized (paired t-test; p < 0.05): when using the curvilinear method IMA was about 5% lower and AT length about 1.2% higher, whereas peak and mean values of AT force and power were 5% higher when compared to the straight-line method (both in walking and running). Statistic-parametric mapping (SMP) analysis revealed significant differences in IMA during the early and the late stance phase of walking and during the late stance phase of running (p < 0.01); SPM revealed significant differences also in AT length during the entire stance phase in both locomotion modes (p < 0.01). These results confirm and extend previous findings to human locomotion: neglecting the AT curvature might be a source of error, resulting in underestimates not only of internal moment arm and tendon length, but also of tendon force and power.


Assuntos
Tendão do Calcâneo , Corrida , Fenômenos Biomecânicos , Humanos , Locomoção , Músculo Esquelético , Caminhada
16.
Scand J Med Sci Sports ; 32(5): 844-855, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35138687

RESUMO

This study combines metabolic and kinematic measurements at the whole-body level, with EMG and ultrasound measurements to investigate the influence of muscle-tendon mechanical behavior on the energy cost (Cnet ) of walking (from 2 to 8 km·h-1 ). Belly gearing (Gb = Δmuscle-belly length/Δfascicles length) and tendon gearing (Gt = ∆muscle-tendon unit length/∆muscle-belly length) of vastus lateralis (VL) and gastrocnemius medialis (GM) were calculated based on ultrasound data. Pendular energy recovery (%R) was calculated based on kinematic data, whereas the cumulative activity per distance travelled (CMAPD) was calculated for the VL, GM, tibialis anterior, and biceps femoris as the ratio between their EMG activity and walking speed. Finally, total CAMPD (CMAPDTOT ) was calculated as the sum of the CMAPD of all the investigate muscles. Cnet and CMAPDTOT showed a U-shaped behavior with a minimum at 4.2 and 4.1 km·h-1 , respectively; while %R, VL, and GM belly gearing showed an opposite trend, reaching a maximum (60% ± 5%, 1.1 ± 0.1 and 1.5 ± 0.1, respectively), between 4.7 and 5 km·h-1 . Gt was unaffected by speed in GM (3.5 ± 0.1) and decreased as a function of it in VL. A multiple stepwise linear regression indicated that %R has the greatest influence on Cnet, followed by CMAPDTOT and GM belly gearing. The role of Gb on Cnet could be attributed to its role in determining muscle work: when Gb increases, fascicles shortening decreases compared with that of the muscle-belly, thereby reducing the energy cost of contraction.


Assuntos
Músculo Esquelético , Tendões , Fenômenos Biomecânicos , Eletromiografia , Humanos , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiologia , Tendões/diagnóstico por imagem , Tendões/fisiologia , Ultrassonografia , Caminhada
17.
Front Physiol ; 12: 683931, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34456744

RESUMO

Changes in muscle shape could play an important role during contraction allowing to circumvent some limits imposed by the fascicle force-velocity (F-V) and power-velocity (P-V) relationships. Indeed, during low-force high-velocity contractions, muscle belly shortening velocity could exceed muscle fascicles shortening velocity, allowing the muscles to operate at higher F-V and P-V potentials (i.e., at a higher fraction of maximal force/power in accordance to the F-V and P-V relationships). By using an ultrafast ultrasound, we investigated the role of muscle shape changes (vastus lateralis) in determining belly gearing (muscle belly velocity/fascicle velocity) and the explosive torque during explosive dynamic contractions (EDC) at angular accelerations ranging from 1000 to 4000°.s-2. By means of ultrasound and dynamometric data, the F-V and P-V relationships both for fascicles and for the muscle belly were assessed. During EDC, fascicle velocity, belly velocity, belly gearing, and knee extensors torque data were analysed from 0 to 150 ms after torque onset; the fascicles and belly F-V and P-V potentials were thus calculated for each EDC. Absolute torque decreased as a function of angular acceleration (from 80 to 71 Nm, for EDC at 1000 and 4000°.s-1, respectively), whereas fascicle velocity and belly velocity increased with angular acceleration (P < 0.001). Belly gearing increased from 1.11 to 1.23 (or EDC at 1000 and 4000°.s-1, respectively) and was positively corelated with the changes in muscle thickness and pennation angle (the changes in latter two equally contributing to belly gearing changes). For the same amount of muscle's mechanical output (force or power), the fascicles operated at higher F-V and P-V potential than the muscle belly (e.g., P-V potential from 0.70 to 0.56 for fascicles and from 0.65 to 0.41 for the muscle belly, respectively). The present results experimentally demonstrate that belly gearing could play an important role during explosive contractions, accommodating the largest part of changes in contraction velocity and allowing the fascicle to operate at higher F-V and P-V potentials.

18.
Eur J Transl Myol ; 31(2)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34210115

RESUMO

The aim of this study was to assess the validity of a custom-made low cost (LC) and a commercial surface EMG apparatus in controlled experimental conditions and different exercise types: maximal voluntary contractions (MVC) at 105, 90, 75, 60, 45 and 30° knee angle and explosive fix-end contractions of the knee extensors (75°) at an isometric dynamometer. sEMG of vastus lateralis was recorded from the same electrodes simultaneously, then analyzed in the same way; sEMG were finally expressed in percentage of those collected at 75°MVC. LC underestimated the sEMG signal at the more extended knee angles (30-60°), significant difference was observed only at 30°. In the explosive contractions no differences between devices were observed in average and peak sEMG, as well as in the time to peak and the activation time. Bland-Altman tests and correlation parameters indicate the LC device is not sensible enough to detect the time to peak and the peak values of the sEMG signal properly. Results suggest low-cost systems might be a valid alternative to commercial ones, but attention must be paid when analyzing rapid events.

19.
Exp Physiol ; 106(9): 1897-1908, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34197674

RESUMO

NEW FINDINGS: What is the topic of this review? This narrative review explores past and recent findings on the mechanical determinants of energy cost during human locomotion, obtained by using a mechanical approach based on König's theorem (Fenn's approach). What advances does it highlight? Developments in analytical methods and their applications allow a better understanding of the mechanical-bioenergetic interaction. Recent advances include the determination of 'frictional' internal work; the association between tendon work and apparent efficiency; a better understanding of the role of energy recovery and internal work in pathological gait (amputees, stroke and obesity); and a comprehensive analysis of human locomotion in (simulated) low gravity conditions. ABSTRACT: During locomotion, muscles use metabolic energy to produce mechanical work (in a more or less efficient way), and energetics and mechanics can be considered as two sides of the same coin, the latter being investigated to understand the former. A mechanical approach based on König's theorem (Fenn's approach) has proved to be a useful tool to elucidate the determinants of the energy cost of locomotion (e.g., the pendulum-like model of walking and the bouncing model of running) and has resulted in many advances in this field. During the past 60 years, this approach has been refined and applied to explore the determinants of energy cost and efficiency in a variety of conditions (e.g., low gravity, unsteady speed). This narrative review aims to summarize current knowledge of the role that mechanical work has played in our understanding of energy cost to date, and to underline how recent developments in analytical methods and their applications in specific locomotion modalities (on a gradient, at low gravity and in unsteady conditions) and in pathological gaits (asymmetric gait pathologies, obese subjects and in the elderly) could continue to push this understanding further. The recent in vivo quantification of new aspects that should be included in the assessment of mechanical work (e.g., frictional internal work and elastic contribution) deserves future research that would improve our knowledge of the mechanical-bioenergetic interaction during human locomotion, as well as in sport science and space exploration.


Assuntos
Corrida , Caminhada , Idoso , Fenômenos Biomecânicos , Metabolismo Energético/fisiologia , Marcha/fisiologia , Humanos , Locomoção/fisiologia , Corrida/fisiologia , Caminhada/fisiologia
20.
J Exp Biol ; 224(16)2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34296753

RESUMO

In this study, we used kinematic, kinetic, metabolic and ultrasound analysis to investigate the role of elastic energy utilization on the mechanical and physiological demands of a movement task (hopping) that primarily involves the plantar-flexor muscles to determine the contribution of tendon work to total mechanical work and its relationship with apparent efficiency (AE) in bouncing gaits. Metabolic power (PMET) and (positive) mechanical power at the whole-body level (PMEC) were measured during hopping at different frequencies (2, 2.5, 3 and 3.5 Hz). The (positive) mechanical power produced during the Achilles tendon recoil phase (PTEN) was obtained by integrating ultrasound data with an inverse dynamic approach. As a function of hopping frequency, PMEC decreased steadily and PMET exhibited a U-shape behaviour, with a minimum at about 3 Hz. AE (PMEC/PMET) showed an opposite trend and was maximal (about 0.50) at the same frequency when PTEN was also highest. Positive correlations were observed: (i) between PTEN and AE (AE=0.22+0.15PTEN, R2=0.67, P<0.001) and the intercept of this relationship indicates the value of AE that should be expected when tendon work is nil; (ii) between AE and tendon gearing (Gt=Δmuscle-tendon unit length/Δmuscle belly length; R2=0.50, P<0.001), where a high Gt indicates that the muscle is contracting more isometrically, thus allowing the movement to be more economical (and efficient); (iii) between Gt and PTEN (R2=0.73, P<0.001), which indicates that Gt could play an important role in the tendon's capability to store and release mechanical power.


Assuntos
Tendão do Calcâneo , Fenômenos Biomecânicos , Marcha , Movimento , Músculo Esquelético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA